# Tubular Heaters - HX and IX

CCI Thermal Technologies Inc. has one factory dedicated to the production of the highest quality tubular heating elements. We use only the best commercially available materials and we use design parameters proven to maximize element life expectancy.

# **Operating Principles**

Refer to Figure 1 page A8 for typical heating element construction. The coil and terminal pins are electrically isolated from the outer metal sheath with highly compacted magnesium oxide which also serves as a conductor for the heat generated by the coil.

When voltage is applied to the heating element terminals, an electric current passes through the heating element resistance coil. Heat is produced as wattage in accordance with Ohm's law where the wattage equals I2R (current squared x coil resistance).

## Watt Density

Watt density is defined as the watts per unit of surface area of the heated section of the heating element. The selection of the ideal watt density for a particular application is the most important parameter affecting heating element service life.

All heat generated by the element resistance coil must be transferred from its sheath so that a balance is maintained. If the transferring medium is poor, the element may reach a high temperature before a sufficient temperature gradient is developed to reach thermal balance.

Since watt density also determines the temperature gradient between the sheath and the resistance coil, it is essentially the watt density that sets the resistance coil temperature.

# Life Expectancy

Normal life expectancy depends mainly on the resistance coil operating temperature (see Figure 1) which is a function of the sheath operating temperature and the wattage per unit heated length of element.

Factors such as cycling frequency will also affect life.

Figure 1 Life vs. Coil Temperature (Typical)



# **Sheath Materials**

Sheath material selection ranks next to watt density in importance. The sheath must withstand the corrosive and temperature effects of its environment. For instance, elements designed for operation in water will generally fail if operated in air.

Fortunately, many different sheath materials are available, making the tubular heater suitable for the vast majority of heating applications.

# **Sizes and Shapes**

We offer a broad selection of element sizes and shapes to suit most any requirement. Larger diameter elements must be used for high voltage applications. Although practical considerations limit length, we can splice selected diameter elements to achieve continuous lengths in excess of 50 meters (2000").

In most applications, the elements are formed at the factory in a series of loops or coils. Elements require furnace annealing prior to bending.

# HX and IX

# **Insulation Resistance**

If an unsealed element is to be installed in a damp area, the element insulation resistance to ground may decrease and, in severe cases, approach zero ohms. Elements with low insulation resistance have high leakage currents which, under certain circumstances, could be hazardous. Factory installed seals which prevent moisture from entering at the terminal ends of the element are available.

# **Dielectric Strength Tests**

One hundred percent (100%) of the elements we manufacture are dielectric strength tested before they are released for shipment. This test, conducted at many times the intended operating voltage of the element, insures that the heater will not "short-out" during normal life.

# Application

Tubular elements of proper rating, material and shape can be used in most heating applications requiring process temperatures to 750°C (1382°F).

Many of the heaters listed in this catalog utilize tubular elements as the heat source.

Tubular elements may be clamped, immersed, cast into metal or spaced away from the work as radiant heaters. Elements can also be positioned in ducts or vessels for heating air or other gases.





#### **Features**

- · Easy to install
- · Available in a wide variety of sheaths, diameters and ratings
- · Heat can be located exactly where required
- Can be formed to practically any shape
- Compact
- · Easy to control to provide heat only when required
- Low maintenance and long life
- · Excellent internal electrical insulation and heat conduction
- · Electrically isolated sheath

## **Catalog Numbers**

We assign a unique catalog number to all elements we manufacture (where practical). One of three prefixes is used to designate which type of element has been supplied as follows:

| PREFIX | TYPE               |
|--------|--------------------|
| HX     | straight, unfinned |
| IX     | formed unfinned    |
| KX     | any finned element |

#### Figure 1 Construction - Tubular Element Features and Components



# **Typical Shapes**

#### **Factory Bending**

Tubular heaters can be factory formed to virtually any shape. Inside bending diameters as small as one element diameter are sometimes possible. Figures 1 to 11 illustrate some of the most commonly used element shapes. If your application can be satisfied with one of these shapes, you may wish to refer to these figures when ordering or requesting pricing information.

Figure 1









Figure 4



Figure 6



Figure 9

# HX and IX







Figure 10



Figure 5









N = Number of turns

# **Typical Installations**

Figure 12 In ovens or cabinets



Figure 15 High wattage resistors or load banks



Figure 18 Clamped to walls, hoppers and pipes



Figure 13 In ducts



Figure 16 To radiate heat

Figure 14 In pipe wells



Figure 17 Immersed in liquids



Figure 20 Sandwiched between plates



plates or cylinders

Figure 19 In drilled holes in



Figure 21 Cast-in to iron, aluminum or copper



Figure 22 Bent to conform to system geometry



Figure 23 In finned heater assemblies











Most tubular elements are made-to-order. The following procedure (Step 1 to Step 9) will simplify the selection of the element best suited to your needs. If you need assistance we will, without obligation, determine your kW requirements and provide design sketches.

#### Step 1 - Determination of wattage requirements.

Refer to Section D of the Caloritech<sup>™</sup> catalog for technical data and sample calculations.

#### Step 2 - Selection of voltage rating and phase.

Remember that, for any fixed voltage, the higher the wattage rating, the higher will be the current. If you have a choice of available voltages try to specify the higher voltage, especially if the required wattage is above 6 kW.

#### STEP 3 - Selection of sheath material.

Sheath material selection is based on the highest expected sheath temperature and also the ability of the metal to withstand corrosion.

**Copper -** For immersion heating of water and noncorrosive aqueous solutions.

**Steel-** For immersion heating of oil or paraffin or casting into iron.

**Incoloy**<sup>®</sup> - For heating air and other gases; clamping-on to tanks and platens; immersion into salt solutions, soft metals, oils, most mildly corrosive chemical solutions; for radiant heating.

**Other Materials -** Refer to the Corrosion Guide recommendations in Section D of the Caloritech<sup>™</sup> catalog.

See Table 1 for common sheath materials and maximum allowable sheath temperatures.

#### **TABLE 1 Sheath Materials vs. Temperature**

| STANDARD           | MAX ALLOWABLE TEMP. |             |  |  |  |  |
|--------------------|---------------------|-------------|--|--|--|--|
| SHEATHS            | °C                  | °F          |  |  |  |  |
| Copper             | 177                 | 350         |  |  |  |  |
| Bundy®             | 400                 | 750         |  |  |  |  |
| Incoloy®           | 815                 | 1500        |  |  |  |  |
| Stainless 304, 321 | 760                 | 1400        |  |  |  |  |
| Steel              | 400                 | 750         |  |  |  |  |
| SPECIAL            | MAX ALLOV           | VABLE TEMP. |  |  |  |  |
| SHEATHS            | °C                  | °F          |  |  |  |  |
| Incoloy®           | 870                 | 1600        |  |  |  |  |
| Monel              | 450                 | 900         |  |  |  |  |
| Stainless 316      | 760                 | 1400        |  |  |  |  |
| Titanium           | 540                 | 1000        |  |  |  |  |

#### Step 4 - Selection of sheath diameter.

Caloritech™

Select sheath diameter from Table 2. Remember that smaller diameter sheaths are the most economical, but their use is restricted at the higher voltages.

## HX and IK

## TABLE 2 Sheath Diam. vs. Max. Allowable Voltage

| STANDA | RD DIA. | MAX.  | SPECI/ | AL DIA. | MAX   |
|--------|---------|-------|--------|---------|-------|
| in     | mm      | VOLTS | in     | mm      | VOLTS |
| .260   | 6.6     | 250   | .112   | 2.8     | 120   |
| .315   | 8.0     | 600*  | .160   | 4.1     | 250   |
| .430   | 10.9    | 600   | .205   | 5.2     | 250   |
| .475   | 12.1    | 600   | .375   | 9.5     | 600   |
|        |         |       | 540    | 13.7    | 600   |

#### \*Note:

.315 (8 mm) diameter elements above 300V require special terminals.

#### Step 5 - Determination of allowable watt density.

Below is a partial listing of maximum recommended watt densities. Refer to Section D for a more complete listing encompassing most applications.

#### **Maximum Watt Density Ratings**

These are suggested ratings only and will differ when flow velocity, heat transfer rate, or operating temperature vary.

#### **TABLE 3 Maximum Watt Density Ratings**

|          |                       | MAXIMUM     | OPERATING   |
|----------|-----------------------|-------------|-------------|
|          |                       | WATTS PER   | TEMPERATURE |
| MATER    | RIAL BEING HEATED     | SQUARE INCH | °C (°F)     |
| Acid Sol | ution                 | 40          | 82 (180)    |
| Alkaline | Solution              | 40          | 100 (212)   |
| Ammoni   | a Plating Solution    | 25          | 10 (50)     |
| Degreas  | ing Solution, Vapor20 | 275         |             |
| Electrop | laing Solution        | 40          | 82 (180)    |
| Fatty Ac | ids                   | 20          | 66 (150)    |
| Freon    |                       | 3           | 149 (300)   |
| Gasoline | )                     | 25          | 149 (300)   |
| Glycerin | e                     | 40          | 10 (50)     |
| Lead-Ste | ereotype Pot          | 35          | 316 (600)   |
| Linseed  | Oil                   | 50          | 66 (150)    |
| Molasse  | S                     | 4-5         | 38 (100)    |
|          | Bunker C Fuel         | 8           | 71 (160)    |
|          | Dowtherm A            | 20          | 316 (600)   |
|          | Dowtherm E            | 12          | 204 (400)   |
| Oile     | Fuel Preheating       | 9-14        | 82 (180)    |
| UIS      | Machine (SAE 30)      | 18-24       | 121 (250)   |
|          | Minoral               | 20-26       | 93 (200)    |
|          | wineral               | 16-18       | 204 (400)   |
|          | Vegetable             | 30-50       | 204 (400)   |
| Paraffin | or Wax                | 16-22       | 66 (150)    |
| Potassiu | m Hydroxide           | 25          | 71 (160)    |
| Water    |                       | 55-80       | 100 (212)   |

**Step 6 - Determination of total required heated length.** Using the maximum allowable watt density from Step 5 and the selected diameter from Step 4 refer to Figure 1 below to determine the wattage per unit of length.

Figure 1 Surface Watts vs Linear Watts



Next divide this number into the required wattage as determined in Step 1. This gives you the total heated length required.

#### Step 7 - Determination of the cold end length

Ideally, the cold end should not be less than 1-1/2" (40 mm) for sheath lengths up to 80" (2000 mm) and 2-1/2" (65 mm) for sheath lengths over 80" (2000 mm). It shall not terminate within a bent section of the element. For immersion, the cold end must always terminate below the minimum liquid level. For higher temperature, "clamp-on", or air heating applications, increasing the cold length will result in lower terminal temperatures.

# Step 8 - Determination of element configuration and total sheath length.

Refer to page A8 for some of the more common shapes for elements. For other shapes, forward to us a hand sketch showing all critical dimensions. In selecting an element shape you may have to use more than one element to meet the following conditions:

- (a) to distribute heat over a large surface or tank;
- (b) if required sheath length is greater than maximum available length shown in Table 4;
- (c) if element heated length, voltage and wattage selected are outside of minimum and maximum ohms per unit of length as shown in Table 4.

### OHMS/UNIT LENGTH =

VOLTS<sup>2</sup>

## WATTS x HEATED LENGTH

# TABLE 4 Sheath Diameter vs. MaximumLength and OHMS/Unit Length

| M<br>nm)                                                       |
|----------------------------------------------------------------|
| 26)                                                            |
| 64)                                                            |
| 72)                                                            |
| 95)                                                            |
| 12)                                                            |
| 12)                                                            |
| 51)                                                            |
| 51)                                                            |
| 51)                                                            |
| <b>n</b><br>16<br>14<br>72<br>95<br>12<br>51<br>51<br>51<br>51 |

#### NOTES:

(1) .260" (0.66 mm) & .315" (0.80 mm) Diam. elements are available in lengths up to

285" (7240 mm) in low volume runs (check factory).

(2) Lengths beyond maximums shown above can be increased by splicing. Check factory for limitations.

# Step 9 - Selection of element terminal and optional hardware.

Refer to page A12 for standard element terminal types and to page A16 for optional hardware.

Types AA and AB terminals can be supplied with 1" (25 mm) length on request.

## When Ordering Specify

- number of elements
- element voltage
- · element wattage
- sheath diameter
- sheath length
- · sheath material
- · length of cold ends
- · terminal type
- · optional hardware
- forming dimensions (send sketch)





**Standard Terminal Types** 



NOTE: Allowable current for each terminal type depends, in part, on the application - check fac tory for details.

| TABLE 1 - Terminal Type Specifications |               |         |       |            |              |              |              |              |              |              |              |              |              |
|----------------------------------------|---------------|---------|-------|------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|
| TERM.                                  | DIM. 'Q'      | THD.    | MAX.  | MAX. TEMP. |              |              | SUITAB       | LE FOR ELE   | MENT DIAMI   | ETERS - inch | nes (mm)     |              |              |
| TYPE                                   | inches (mm)   | SIZE    | VOLTS | °C (°F)    | 0.112 (2.84) | 0.160 (4.06) | 0.205 (5.21) | 0.260 (6.60) | 0.315 (8.00) | 0.375 (9.53) | 0.430 (10.9) | 0.475 (12.1) | 0.540 (13.7) |
| A                                      | 1 1/8 (28.6)* | #10-32* | 600   | 400 (752)  | 1            | 1            | 1            | 1            | 1            | 1            | 1            | 1            | _            |
| AA                                     | 1 1/8 (28.6)* | #10-32* | 600   | 200 (392)  | -            | -            | -            | 1            | 1            | 1            | 1            | 1            | -            |
| AAH                                    | 1 1/8 (28.6)* | #10-32* | 600   | 150 (302)  | -            | -            | -            | 1            | 1            | 1            | 1            | 1            | -            |
| AB                                     | 1 1/8 (28.6)* | #10-32* | 600   | 400 (752)  | -            | 1            | 1            | 1            | 1            | 1            | 1            | 1            | -            |
| AC                                     | 1 1/8 (28.6)* | #10-32* | 600   | 400 (752)  | -            | -            | -            | -            | -            | -            | 1            | -            | 1            |
| D                                      | 13/16 (20.6)  | #10-32* | 250   | 400 (752)  | 1            | 1            | 1            | 1            | 1            | 1            | 1            | 1            | -            |
| DA                                     | 13/16 (20.6)  | #10-32* | 250   | 200 (392)  | -            | 1            | 1            | 1            | 1            | 1            | 1            | 1            | -            |
| DB                                     | 13/16 (20.6)  | #10-32* | 250   | 400 (752)  | -            | 1            | 1            | 1            | 1            | 1            | 1            | 1            | -            |
| E                                      | 11/16 (17.5)  | #10-32* | 250   | 400 (752)  | 1            | 1            | 1            | 1            | 1            | 1            | 1            | 1            | -            |
| EA                                     | 11/16 (17.5)  | #10-32* | 250   | 200 (392)  | -            | 1            | 1            | 1            | 1            | 1            | 1            | 1            | -            |
| EB                                     | 11/16 (17.5)  | #10-32* | 250   | 400 (752)  | -            | 1            | 1            | 1            | 1            | 1            | 1            | 1            | -            |
| F                                      | 15/16 (23.8)  | N/A     | 250   | 250 (482)  | 1            | 1            | 1            | 1            | 1            | 1            | 1            | 1            | -            |
| FA                                     | 15/16 (23.8)  | N/A     | 250   | 200 (392)  | -            | 1            | 1            | 1            | 1            | 1            | 1            | 1            | -            |
| FB                                     | 15/16 (23.8)  | N/A     | 250   | 250 (482)  | -            | -            | -            | 1            | 1            | 1            | 1            | 1            | -            |
| G                                      | 1 1/8 (28.6)* | #8-32   | 250   | 400 (752)  | -            | -            | -            | 1            | -            | -            | -            | -            | -            |
| G                                      | 1 3/8 (34.9)  | #10-32* | 250   | 400 (752)  | _            | -            | -            | -            | 1            | -            | -            | _            | -            |
| G                                      | 1 3/8 (34.9)  | #10-32* | 250   | 400 (752)  | -            | -            | -            | -            | -            | 1            | -            | -            | -            |
| G                                      | 1 5/8 (41.3)  | 1/4"-28 | 250   | 400 (752)  | -            | -            | -            | -            | -            | -            | 1            | -            | -            |
| J1                                     | 1 (25.4)      | N/A     | 300   | 200 (392)  | 1            | 1            | 1            | 1            | 1            | 1            | 1            | 1            | -            |
| J2                                     | 1/2 (12.7)    | N/A     | 300   | 200 (392)  | 1            | 1            | 1            | 1            | 1            | 1            | 1            | 1            | -            |
| JF*                                    | 1 5/8 (41.3)  | N/A     | 300   | 90 (194)   | _            | -            |              | /            | 1            | 1            | 1            | _            | _            |
|                                        |               |         |       |            |              |              |              |              |              |              |              |              |              |

**NOTE:** \*1 1/8" (28.6 mm) available as 1" (25.4 mm); #10-32 available in #8-32; type JF, Q = 2 1/4" (57.2 mm) for .375" (9.53 mm) and 2 3/4" (69.9 mm) for 0.430" (10.9 mm)

HX and IK

## Watt Density - Temperature Data



Figure 2 Allowable watt density on tubular elements in distributed air velocity of 1 ft. / sec.









Figure 5 Allowable watt density on tubular elements in distributed air velocity of 16 ft. / sec.



Figure 6 Allowable watt density for clamped-on tubular elements based on work temperature.



**Tubular Heaters** 

# Listed Elements - .315" (8.0 mm) and .430" (10.9 mm) Diameters

Tables 1 and 2 list typical incoloy<sup>®</sup> sheathed elements. The .315 (8.0 mm) diameter elements are generally for use at supply voltages of 240V and less. The .430 (10.9 mm) diameter elements listed in Table 2 can be used at up to 600V. An unlimited number of combinations of length, wattage, voltage rating and heated length are available in a wide selection of sheath materials (check factory). continued on next page...



# TABLE 1 Diameter Incoloy<sup>®</sup> Sheathed Elements - .315" (8.0 mm)

| HEA   | TED  |            |             | ١                 | NATTAGE A         | AND WATT D | DENSITY A         | T VARIOUS         | VOLTAGES     | 3                 |                   |             |
|-------|------|------------|-------------|-------------------|-------------------|------------|-------------------|-------------------|--------------|-------------------|-------------------|-------------|
| LEN   | GTH  | RESISTANCE |             | 120V              |                   |            | 208V              |                   |              | 240V              |                   | CATALOGUE   |
| in    | mm   | (ohms)     | WATTS       | W/in <sup>2</sup> | W/cm <sup>2</sup> | WATTS      | W/in <sup>2</sup> | W/cm <sup>2</sup> | WATTS        | W/in <sup>2</sup> | W/cm <sup>2</sup> | NUMBER      |
| 15.7  | 400  | 90.0       | 160         | 10                | 1.6               | 470        | 30                | 4.7               | 620          | 40                | 6.2               | HXI10480-01 |
| 15.7  | 400  | 46.5       | 310         | 20                | 3.1               | 940        | 60                | 9.3               | 1250         | 80                | 12.4              | HXI10480-02 |
| 15.7  | 400  | 23.2       | 620         | 40                | 6.2               | -          | _                 | _                 | -            | _                 | -                 | HXI10480-03 |
| 23.6  | 600  | 120.0      | 120         | 5                 | 0.8               | 350        | 15                | 2.3               | 470          | 20                | 3.1               | HXI10480-04 |
| 23.6  | 600  | 62.6       | 230         | 10                | 1.6               | 700        | 30                | 4.7               | 940          | 40                | 6.2               | HXI10480-05 |
| 23.6  | 600  | 30.6       | 470         | 20                | 3.1               | 1400       | 60                | 9.3               | 1870         | 80                | 12.4              | HXI10480-06 |
| 23.6  | 600  | 15.3       | 940         | 40                | 6.2               | _          | -                 | _                 |              | -                 | _                 | HXI10480-07 |
| 31.5  | 800  | 90.0       | 160         | 5                 | 0.8               | 470        | 15                | 2.3               | 620          | 20                | 3.1               | HXI10480-08 |
| 31.5  | 800  | 46.5       | 310         | 10                | 1.6               | 940        | 30                | 4.7               | 1250         | 40                | 6.2               | HXI10480-09 |
| 31.5  | 800  | 23.2       | 620         | 20                | 3.1               | 1870       | 60                | 9.3               | 2490         | 80                | 12.4              | HXI10480-10 |
| 31.5  | 800  | 11.5       | 1250        | 40                | 6.2               | -          | -                 | -                 | -            | -                 | -                 | HXI10480-11 |
| 39.4  | 1000 | 75.8       | 190         | 5                 | 0.8               | 580        | 15                | 2.3               | 780          | 20                | 3.1               | HXI10480-12 |
| 39.4  | 1000 | 36.9       | 390         | 10                | 1.6               | 1170       | 30                | 4.7               | 1560         | 40                | 6.2               | HXI10480-13 |
| 39.4  | 1000 | 18.5       | 780         | 20                | 3.1               | 2340       | 60                | 9.3               | 3120         | 80                | 12.4              | HXI10480-14 |
| 39.4  | 1000 | 9.2        | 1560        | 40                | 6.2               | _          | -                 | -                 | _            | -                 | -                 | HXI10480-15 |
| 47.2  | 1200 | 62.6       | 230         | 5                 | 0.8               | 700        | 15                | 2.3               | 940          | 20                | 3.1               | HXI10480-16 |
| 47.2  | 1200 | 30.6       | 470         | 10                | 1.6               | 1400       | 30                | 4.7               | 1870         | 40                | 6.2               | HXI10480-17 |
| 47.2  | 1200 | 15.3       | 940         | 20                | 3.1               | 2810       | 60                | 9.3               | 3740         | 80                | 12.4              | HXI10480-18 |
| 47.2  | 1200 | 7.7        | 1870        | 40                | 6.2               | _          | -                 | -                 | _            | -                 | -                 | HXI10480-19 |
| 59.1  | 1500 | 49.7       | 290         | 5                 | 0.8               | 880        | 15                | 2.3               | 1170         | 20                | 3.1               | HXI10480-20 |
| 59.1  | 1500 | 24.8       | 580         | 10                | 1.6               | 1750       | 30                | 4.7               | 2340         | 40                | 6.2               | HXI10480-21 |
| 59.1  | 1500 | 12.3       | 1170        | 20                | 3.1               | 3510       | 60                | 9.3               | 2680         | 80                | 12.4              | HXI10480-22 |
| 59.1  | 1500 | 6.2        | 2340        | 40                | 6.2               | _          | -                 | _                 |              | -                 |                   | HXI10480-23 |
| 70.9  | 1800 | 41.1       | 350         | 5                 | 0.8               | 1050       | 15                | 2.3               | 1400         | 20                | 3.1               | HXI10480-24 |
| 70.9  | 1800 | 20.6       | 700         | 10                | 1.6               | 2100       | 30                | 4./               | 2810         | 40                | 6.2               | HXI10480-25 |
| 70.9  | 1800 | 10.3       | 1400        | 20                | 3.1               | 4210       | 60                | 9.3               | 5610         | 80                | 12.4              | HXI10480-26 |
| 70.9  | 1800 | 5.1        | 2810        | 40                | 6.2               |            | -                 | -                 | -            | -                 | -                 | HXI10480-27 |
| 82.7  | 2100 | 35.1       | 410         | 5                 | 0.8               | 1230       | 15                | 2.3               | 1640         | 20                | 3.1               | HXI10480-28 |
| 82.7  | 2100 | 17.0       | 820         | 10                | 1.0               | 2450       | 30                | 4.7               | 3270         | 40                | 0.2               | HXI10480-29 |
| 82.7  | 2100 | 8.8        | 2270        | 20                | 3.1               | 4910       | 60                | 9.3               | 6550         | 80                | 12.4              | HXI10480-30 |
| 02.1  | 2100 | 4.4        | 3270        | 40                | 0.2               | - 1400     | - 15              |                   | 1970         |                   |                   | HXI10460-31 |
| 94.5  | 2400 | 30.0       | 470         | 10                | 0.8               | 2910       | 20                | 2.3               | 2740         | 20                | 5.1               | HAI10400-32 |
| 94.5  | 2400 | 15.5       | 940<br>1970 | 10                | 1.0               | 2010       | 30<br>60          | 4.7               | 740          | 40                | 12.4              | HAI10400-33 |
| 106.3 | 2400 | 27.2       | 530         | 5                 | 0.8               | 1580       | 15                | 9.3               | 2100         | 20                | 3.1               | HXI10480-34 |
| 100.3 | 2700 | 13.7       | 1050        | 10                | 0.8               | 3160       | 30                | 2.5               | 2100         | 20                | 5.1               | HXI10400-35 |
| 100.3 | 2700 | 69         | 2100        | 20                | 3.1               | 6310       | 60                | 4.1<br>Q 3        | 4∠10<br>8420 | 40<br>80          | 0.Z<br>12.4       | HX110480-30 |
| 118 1 | 3000 | 24.8       | 580         | 5                 | 0.1               | 1750       | 15                | 23                | 2340         | 20                | 3.1               | HXI10480-38 |
| 118 1 | 3000 | 12.3       | 1170        | 10                | 1.6               | 3510       | 30                | 2.5<br>4.7        | 4680         | 40                | 6.2               | HXI10480-30 |
| 118.1 | 3000 | 6.2        | 2340        | 20                | 3.1               | 7010       | 60                | 9.3               | 9350         | 80                | 12.4              | HXI10480-40 |
|       |      | ··-        |             |                   | •••               |            | ~ ~               |                   |              | ~ ~               |                   |             |

HX and IK

A

Caloritech™

#### ... continued from previous page

These elements are stocked in limited quantities (7.1"/181.1 mm and shorter). We can add the terminal type you require, adjust the cold end length anywhere from 1.6" to 5.9" (40 to 150 mm) and ship within three or four working days. Multiple elements can be field wired in series or parallel to meet your application requirements.

If a lead time of three or four weeks is available, it is always best to order a custom element to meet your specific needs. A word of caution... regardless of the element you choose, since it can get very hot, it may prove hazardous to people or property if it is improperly selected and applied. Pages A10 and A11 discuss the selection process. If you are even the least bit uncertain of your choice or if you require any type of assistance, contact our agent or nearest sales office.

## To Order Specify

- quantity
- catalog no.
- voltage
- wattage
- cold end length; 1.6" to 5.9" (40 mm to 150 mm)
- terminal type (see page A12)

# TABLE 2 Diameter Incoloy<sup>®</sup> Sheathed Elements - .430" (10.9 mm)

| HEA   | HEATED WATTAGE AND WATT DENSITY AT VARIOUS VOLTAGES |            |       |                   |                   |       |                   |                   |       |                   |                   |             |
|-------|-----------------------------------------------------|------------|-------|-------------------|-------------------|-------|-------------------|-------------------|-------|-------------------|-------------------|-------------|
| LEN   | GTH                                                 | RESISTANCE |       | 120V              |                   |       | 208V              |                   |       | 240V              |                   | CATALOGUE   |
| in    | mm                                                  | (ohms)     | WATTS | W/in <sup>2</sup> | W/cm <sup>2</sup> | WATTS | W/in <sup>2</sup> | W/cm <sup>2</sup> | WATTS | W/in <sup>2</sup> | W/cm <sup>2</sup> | NUMBER      |
| 23.6  | 600                                                 | 180.0      | 320   | 10                | 1.6               | 1280  | 40                | 6.2               | 1980  | 62                | 9.6               | HXI10481-01 |
| 23.6  | 600                                                 | 120.0      | 480   | 15                | 2.3               | 1910  | 60                | 9.3               | 2970  | 93                | 14.4              | HXI10481-02 |
| 23.6  | 600                                                 | 60.0       | 960   | 30                | 4.7               | -     | _                 | -                 | -     | _                 | _                 | HXI10481-03 |
| 35.4  | 900                                                 | 240.0      | 240   | 5                 | 0.8               | 960   | 20                | 3.1               | 1480  | 31                | 4.8               | HXI10481-04 |
| 35.4  | 900                                                 | 120.0      | 480   | 10                | 1.6               | 1910  | 40                | 6.2               | 2970  | 62                | 9.6               | HXI10481-05 |
| 35.4  | 900                                                 | 80.0       | 720   | 15                | 2.3               | 2870  | 60                | 9.3               | 4450  | 93                | 14.4              | HXI10481-06 |
| 35.4  | 900                                                 | 40.0       | 1440  | 30                | 4.7               | _     | -                 | _                 | _     | -                 | -                 | HXI10481-07 |
| 47.2  | 1200                                                | 180.0      | 320   | 5                 | 0.8               | 1280  | 20                | 3.1               | 1980  | 31                | 4.8               | HXI10481-08 |
| 47.2  | 1200                                                | 90.0       | 640   | 10                | 1.6               | 2550  | 40                | 6.2               | 3960  | 62                | 9.6               | HXI10481-09 |
| 47.2  | 1200                                                | 60.0       | 960   | 15                | 2.3               | 3830  | 60                | 9.3               | 5940  | 93                | 14.4              | HXI10481-10 |
| 47.2  | 1200                                                | 30.2       | 1910  | 30                | 4.7               | _     | -                 | _                 | _     | -                 | -                 | HXI10481-11 |
| 63.0  | 1600                                                | 134.0      | 430   | 5                 | 0.8               | 1700  | 20                | 3.1               | 2640  | 31                | 4.8               | HXI10481-12 |
| 63.0  | 1600                                                | 67.8       | 850   | 10                | 1.6               | 3400  | 40                | 6.2               | 5280  | 62                | 9.6               | HXI10481-13 |
| 63.0  | 1600                                                | 45.0       | 1280  | 15                | 2.3               | 5110  | 60                | 9.3               | 7910  | 93                | 14.4              | HXI10481-14 |
| 63.0  | 1600                                                | 22.6       | 2550  | 30                | 4.7               | -     | -                 | _                 | -     | -                 | -                 | HXI10481-15 |
| 78.7  | 2000                                                | 108.7      | 530   | 5                 | 0.8               | 2130  | 20                | 3.1               | 3300  | 31                | 4.8               | HXI10481-16 |
| 78.7  | 2000                                                | 54.3       | 1060  | 10                | 1.6               | 4250  | 40                | 6.2               | 6590  | 62                | 9.6               | HXI10481-17 |
| 78.7  | 2000                                                | 36.0       | 1600  | 15                | 2.3               | 6380  | 60                | 9.3               | 9890  | 93                | 14.4              | HXI10481-18 |
| 78.7  | 2000                                                | 18.1       | 3190  | 30                | 4.7               | -     | -                 | _                 | -     | -                 | -                 | HXI10481-19 |
| 94.5  | 2400                                                | 90.0       | 640   | 5                 | 0.8               | 2550  | 20                | 3.1               | 3960  | 31                | 4.8               | HXI10481-20 |
| 94.5  | 2400                                                | 45.0       | 1280  | 10                | 1.6               | 5110  | 40                | 6.2               | 7910  | 62                | 9.6               | HXI10481-21 |
| 94.5  | 2400                                                | 30.2       | 1910  | 15                | 2.3               | 7660  | 60                | 9.3               | 11870 | 93                | 14.4              | HXI10481-22 |
| 94.5  | 2400                                                | 15.0       | 3830  | 30                | 4.7               | _     | -                 | _                 | -     | -                 | -                 | HXI10481-23 |
| 110.2 | 2800                                                | 77.8       | 740   | 5                 | 0.8               | 2980  | 20                | 3.1               | 4620  | 31                | 4.8               | HXI10481-24 |
| 110.2 | 2800                                                | 38.7       | 1490  | 10                | 1.6               | 5960  | 40                | 6.2               | 9230  | 62                | 9.6               | HXI10481-25 |
| 110.2 | 2800                                                | 25.8       | 2230  | 15                | 2.3               | 8930  | 60                | 9.3               | 13850 | 93                | 14.4              | HXI10481-26 |
| 110.2 | 2800                                                | 12.9       | 4470  | 30                | 4.7               | -     | -                 | _                 | _     | -                 | -                 | HXI10481-27 |
| 133.9 | 3400                                                | 64.0       | 900   | 5                 | 0.8               | 3620  | 20                | 3.1               | 5610  | 31                | 4.8               | HXI10481-28 |
| 133.9 | 3400                                                | 31.8       | 1810  | 10                | 1.6               | 7230  | 40                | 6.2               | 11210 | 62                | 9.6               | HXI10481-29 |
| 133.9 | 3400                                                | 21.3       | 2710  | 15                | 2.3               | 10850 | 60                | 9.3               | 16820 | 93                | 14.4              | HXI10481-30 |
| 133.9 | 3400                                                | 10.6       | 5420  | 30                | 4.7               | -     | -                 | -                 | -     | -                 | -                 | HXI10481-31 |
| 157.5 | 4000                                                | 54.3       | 1060  | 5                 | 0.8               | 4250  | 20                | 3.1               | 6590  | 31                | 4.8               | HXI10481-32 |
| 157.5 | 4000                                                | 27.0       | 2130  | 10                | 1.6               | 8510  | 40                | 6.2               | 13190 | 62                | 9.6               | HXI10481-33 |
| 157.5 | 4000                                                | 18.1       | 3190  | 15                | 2.3               | 12760 | 60                | 9.3               | 19780 | 93                | 14.4              | HXI10481-34 |
| 157.5 | 4000                                                | 9.0        | 6380  | 30                | 4.7               | _     | -                 | _                 | -     | -                 | -                 | HXI10481-35 |
| 181.1 | 4600                                                | 47.2       | 1220  | 5                 | 0.8               | 4890  | 20                | 3.1               | 7580  | 31                | 4.8               | HXI10481-36 |
| 181.1 | 4600                                                | 23.5       | 2450  | 10                | 1.6               | 9790  | 40                | 6.2               | 15170 | 62                | 9.6               | HXI10481-37 |
| 181.1 | 4600                                                | 15.7       | 3670  | 15                | 2.3               | 14680 | 60                | 9.3               | 22750 | 93                | 14.4              | HXI10481-38 |
| 181.1 | 4600                                                | 7.8        | 7340  | 30                | 4.7               | _     | _                 | _                 | _     | _                 | _                 | HXI10481-39 |

# HX and IX



#### **Threaded Fitting (Figure1)**

Threaded fittings can be factory brazed or welded to the element cold section. These fittings provide a leak tight joint in applications where the heater is installed in open tanks or vessels. Fittings are available in brass, steel or stainless. (Check factory.)

my la



Figure 1

#### **Compression Fitting (Figure 2)**

Compression fittings (in nickel plated brass) can be provided for field installation on .430" (10.9 mm) diameter elements only.



Figure 2

#### **Terminal Box (Figure 3)**

Moisture resistant terminal boxes can be supplied loose or factory installed.

Boxes supplied for field installation can be provided with predrilled holes to accept the element. Note that the element will require fittings for connection to the box.

Figure 3



#### Element Clamp (Figure 4)

These two piece stainless steel clamps can be used as element standoffs in ovens or tanks. One half of the clamp is ideal for clamp-on applications when used with a stud welded to the tank or plate. "C" dim. is available at 1 1/4" (32 mm), 1 7/16" (36.5 mm), 1 5/8" (41 mm) or 1 15/16"(49 mm).

Figure4



#### Mounting Brackets (Figures 5-7)

Standard mounting brackets can be factory crimped to elements to facilitate installation. Special brackets are available for high volume orders.



#### **Part Numbers**

Refer to these part numbers when ordering special features.

|        | •                          | 0 1           |
|--------|----------------------------|---------------|
| Figure | DESCRIPTION                | PART NO.      |
| 1      | Threading Fitting          | Check Factory |
| 2      | Compression Fitting        | A11300        |
| 3      | Terminal Box (small diam.) | XH1B2M        |
| 3      | Terminal Box (large diam.) | XH2B1M        |
| 4      | Element Clamp              | A10619        |
| 5      | Bracket                    | A10783        |
| 6      | Bracket                    | A50100        |
| 7      | Bracket                    | A10860        |
|        |                            |               |

# HX and IK